
The Green function of neutral gluons in color magnetic background field at finite temperature

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 164045

(http://iopscience.iop.org/1751-8121/41/16/164045)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/16
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 164045 (9pp) doi:10.1088/1751-8113/41/16/164045

The Green function of neutral gluons in color
magnetic background field at finite temperature

M Bordag1, A Ferludin2, N Khandoga2 and V Skalozub2

1 University of Leipzig, Institute for Theoretical Physics
2 Dnipropetrovsk National University, 49050 Dnipropetrovsk, Ukraine

E-mail: Michael.Bordag@itp.uni-leipzig.de and Skalozub@ff.dsu.dp.ua

Received 29 October 2007, in final form 10 January 2008
Published 9 April 2008
Online at stacks.iop.org/JPhysA/41/164045

Abstract
In SU(2) gluodynamics, the tensor structure of the exact Green function
of gluons neutral with respect to a homogeneous chromomagnetic field
at finite temperature is derived. It is expressed through 10 tensors and
corresponding form factors. These tensors constitute an algebra with respect
to anticommutation. The structure constants of the algebra are calculated. The
spectrum of gluons is derived from the location of poles of this Green function
for the case of form factors computed in one-loop order. The high temperature
asymptotics for the form factors and the spectra of different gluon states in this
limit are calculated.

PACS numbers: 11.15.−q, 11.10.Wx, 12.38.−t

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent investigations of QCD at high temperature revealed an important role of colored
magnetic fields. In particular, it has been elucidated in gluodynamics that color magnetic
fields are spontaneously created at high temperature [1–3]. It is also reasonable to suppose
that the same mechanism, the spontaneous generation of magnetic fields, is also responsible
for producing seed magnetic fields in the early universe. From the analysis of the lattice
simulations [6, 7], and using the perturbative daisy resummations in the external field at high
temperature [3, 8] it was discovered that Abelian chromomagnetic fields of order gB ∼ g4T 2,
where g is a gauge coupling constant, B is field strength, T is the temperature, are spontaneously
created.

To describe the properties of matter in this case one has to calculate the spectra of quarks
and gluons in the background field at finite temperature. In the present paper, we construct
the exact neutral gluon Green function in the external Abelian chromomagnetic field at finite
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temperature and investigate its properties. The gluon spectrum is derived from the location
of poles of this function. For that we first determine the tensor structure of the neutral gluon
Green function in this environment. It is presented as the set of operators and corresponding
form factors. These form factors are expressed in terms of the polarization tensor which
we have calculated early in one-loop order [5]. Hence the spectra of gluons in the given
approximation are calculated. Some features of these states are investigated.

2. The structure of the polarization tensor

We consider SU(2) gluodynamics as the particular case. We divide the gauge field potential
Aa

µ(x) into the background Abelian homogeneous magnetic field Ba
µ(x) and the quantum

fluctuations Qa
µ(x),

Aa
µ(x) = Ba

µ(x) + Qa
µ(x). (1)

The background field Ba
µ(x) is directed along the third axis in both color and configuration

spaces. Its vector potential is

Ba
µ(x) = δa3δµ1x2B. (2)

In the field presence it is convenient to turn to the so-called ‘charged basis’ W±
µ =(

Q1
µ ± iQ2

µ

)/√
2,Qµ = Q3

µ, with the interpretation of W±
µ as color charged fields (‘charged’

gluons) and Qµ as color neutral fields (‘neutral’ gluons). The neutral gluon has continuous
momentum, whereas the charged one has the discrete Landau levels in perpendicular with
respect to the field direction. In [4] the one-loop gluon polarization tensor at zero temperature
was derived. In [5] that has been done for the finite temperature case.

In what follows, we use the Feynman gauge where the propagator of neutral gluon in
Euclidean’s metric with a momentum kµ is

D(0)
µν = δµν

k2
. (3)

In the tree approximation, the spectrum can be determined from the location of poles of D(0)
µν ,

that is from the equation k2 = 0.
The exact Green function Dµν of neutral gluons in the field Ba

µ(x) is a function of two
vectors formed from momentum components hλ = (k1, k2, 0, 0), lλ = (0, 0, k3, k4) and the
field induction B. It is given by the Schwinger–Dyson equation which in operator form reads

D = 1

(k2 − �)
, (4)

where � is the polarization tensor (PT).
As it was shown in [4, 9], in a magnetic field the PT is not transversal. This means that

the condition kµ�µν = 0 does not hold. A weaker condition,

kµ�µνkν = 0. (5)

following from the Slavnov–Taylor identity, only holds.
In [5] the following tensor structure of the neutral gluon PT at finite temperature was

derived

�µν =
10∑
i=1

�(i)T (i)
µν (6)

2
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with

T
(1)
λλ′ = l2δ

‖
λλ′ − lλlλ′ , T

(2)
λλ′ = h2δ⊥

λλ′ − hλhλ′,

T
(3)
λλ′ = h2δ

‖
λλ′ + l2δ⊥

λλ′ − lλhλ′ − hλlλ′, T
(4)
λλ′ = h2δ

‖
λλ′ − l2δ⊥

λλ′ ,

T
(5)
λλ′ = i(lλdλ′ − dλlλ′) + il2Fλλ′, T

(6)
λλ′ = iFλλ′,

(7)

where δ‖ = diag(0, 0, 1, 1), δ⊥ = diag(1, 1, 0, 0), dλ = (k2,−k1, 0, 0) and the nonzero
components of Fλλ′ are F01 = −F10 = 1.

The first four tensors T (i) are transversal, kµTµν = 0, whereas the last two obey only
equation (5). At finite temperature, we have to take into consideration the additional vector
uµ—the thermostat velocity. Hence four additional tensors are as follows:

T
(7)
λλ′ = (uk)(uλlλ′ + lλuλ′) − δ

‖
λλ′(uk)2 − uλuλ′ l2,

T
(8)
λλ′ = (uk)(uλhλ′ + hλuλ′) − δ⊥

λλ′(uk)2 − uλuλ′h2,

T
(9)
λλ′ = i(uλdλ′ − dλuλ′) + iFλλ′(uk),

T
(10)
λλ′ = k2δλλ′ − (k2)2uλuλ′

(uk)2
.

(8)

In the reference frame of thermostat uµ = (0, 0, 0, 1) the scalar product (uk) = k4 is the
fourth component of the momentum. The tensors T (7), T (8) and T (9) are transversal and T (10)

satisfies the weaker condition (5).
Since �µν is real and symmetric in its indices, the form factors �(5),�(6) and �(9) equal

to zero. It is possible to check that the set of tensors (7)–(8) together with the identity matrix
T (0)

µν = k2
(
δ‖
µν + δ⊥

µν

)
forms an algebra

{T (i), T (j)} = 2C
ij

k T (k). (9)

Its structure constants C
ij

k were calculated from the explicit expressions for the tensors
T (i), where the indices run the values i, j = 0, 1, . . . , 10. That is assumed in what follows.
Due to completeness of the set of operators T (i), one can obtain D as a linear combination

Dµν =
10∑
i=0

D(i)T (i)
µν , (10)

where D(i) are some scalar functions of k2 and l2 entering the form factors �(i). They will be
calculated in the following section.

3. The gluon Green function

First we note that T (i) are functions of hµ = (k1, k2, 0, 0), lµ = (0, 0, k3, k4) and uµ =
(0, 0, 0, 1). The convolution of T (i) and some linear combination of hµ, lµ and uµ is again a
linear combination of these vectors with other coefficients, (αlµ + βhµ + γ uµ)T (i)

µν = xlν +
yhν + zuν . Let us consider a tensor

P(α, β, γ, x, y, z)µν ≡ (αlµ + βhν + γ uµ)(xlν + yhν + zuµ) (11)

and its convolution with D. From equation (10) we obtain

P(α, β, γ, x, y, z)µνDνµ = (αlµ + βhµ + γ uµ)Dµν(xlν + yhν + zuν)

=
10∑
i=0

D(i)(αlµ + βhµ + γ uµ)T (i)
µν (xlν + yhν + zuν). (12)

3
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On the other hand, we can substitute (k2 − �)−1
µν for Dµν in equation (12) and get some

functions which depend on the form factors �(i),

P(α, β, γ, x, y, z)µν

[
1

(k2 − �)

]
νµ

= 1

k2

∞∑
r=0

(−1)r
1

k2r

[
(αlµ + βhµ + γ uµ)T �r

µν

]
(xlν + yhν + zuν). (13)

Here we expressed the function of � in the form of series to find

(αlµ + βhµ + γ uµ)�µν = (α′lν + β ′hν + γ ′uµ). (14)

In the operator form we get

A

⎛
⎝α

β

γ

⎞
⎠ =

⎛
⎝α′

β ′

γ ′

⎞
⎠ , (15)

where A is a transformation matrix. Obviously that

(αlµ + βhµ + γ uµ)�r
µν = Ar(α′lν + β ′hν + γ ′uµ). (16)

So, if we have a function of � we can replace it by A

P(α, β, γ, x, y, z)µν

[
1

(k2 − �)

]
νµ

= P(α, β, γ, x, y, z)µν

[
1

(k2 − A)

]
νµ

. (17)

In our case, the matrix A has the following elements:

A11 = h2(�(3) + �(5)) + (uk)2(�(7) − �(8));
A12 = −l2�(3) + (uk)2�(8); A13 = −h2�(8);
A21 = −h2�(3); A22 = l2(�(3) − �(5)); A23 = h2�(8);
A31 = (uk)2�(1); A32 = (uk)2(�(3) + �(8));
A33 = l2�(1) + h2(�(3) + �(5)) + ((uk)2 − h2)�(8).

(18)

By specifying the values of coefficients α, β, γ, x, y, z we can derive the factors D(i) in terms
of form factors (�(i) = �i)

D(0) = B11 + B12 + B21 + B22

k2ψ
,

D(1) = ω + (uk)2�7δ

k2 − l2�1 − h2(�3 + �5) + (uk)2�7
,

D(2) = 1

ψ

k2�2 + h2�2(�3 + �5) + h2�2
3 + (uk)2�8(�2 − �8)

k2 + h2�2 + l2(�3 − �5) + (uk)2�8
,

D(3) = − B12 + B32

ψh2[l2 + (uk)2]
,

D(5) = (uk)2 − k2

ψk2h2[(uk)2 − l2]

[
B11 + B13 + B31 +

h2

(uk)2 − k2
B32

]
,

D(7) = ω + (uk)2�7δ

k2 − l2�1 − h2(�3 + �5) + (uk)2�7
− δ,

D(8) = 1

ψh2[l2 + (uk)2]

[
B12 +

l2

(uk)2
B32

]
,

D(10) = B21 + B31 + B22 + B32l
2/(uk)2

ψk4[1 − l2/(uk)2]
,

(19)
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where we introduced the notation ψ = det[k2 − A], Bij are the matrix elements of B =
(k2 −A)−1, δ = (B31 +B32)[l2 −(uk)2]−1ψ−1 and ω = [k2�1D0 +h2�1(D3 +D5)+h2�3D1].

By means of equation (19) we expressed the form factors of the Green function in terms
of form factors of the PT. The latter are still arbitrary. In the following section we calculate
the one-loop approximation to them.

4. Form factors in one-loop order

In [5] the form factors �(i)(k) have been represented as two-parametric integrals and a sum,

�(i)(k) =
∞∑

N=−∞

∫ ∞

0
ds dt M(i)(s, t)
T . (20)

The explicit form of the functions M(i)(s, t) is

M1 = 4 − 2

(
ξ

q

)2

cosh(2q),

M2 = 4
1 − cosh(q) cosh(ξ)

(sinh(q))2
− 2 + 8 cosh(q) cosh(ξ),

M3 = −2 cosh(2q)
ξ sinh(ξ)

q sinh(q)
− 2 + 6 cosh(ξ) cosh(q),

M4 = −2 + 2 cosh(q) cosh(ξ),

M5 = 2
ξ

q

(
sinh(2q) − cosh(q) − cosh(ξ)

sinh(q)

)
− 6 cosh(q) sinh(ξ),

M
(1)
6 = 2

[
ξ

q
coth(q)(1 − 3(sinh(q))2) + sinh(ξ) cosh(q)

]
l2

+ 2

[
sinh(ξ)

sinh(q)
coth(q)(1 − 3(sinh(q))2) + 2 sinh(ξ) cosh(q)

]
h2,

M
(2)
6 = iN

qT
k42 (sinh(2q) − coth(q)) ,

M7 = iN

qT

1

k4

ξ

q
(−2 cosh(2q)),

M8 = iN

qT

1

k4

(
−2

sinh(ξ)

sinh(q)
− 4 sinh(q) sinh(ξ)

)
,

M9 = iN

qT
2

[
cosh(q) − cosh(ξ)

sinh(q)
− sinh(2q) − 2 sinh(q) cosh(ξ)

]
,

M10 = 0,

(21)

with the notations ξ = s − t, q = s + t . The calculation was done in the imaginary time
formalism, i.e., with a discrete fourth component p4 = 2πlT (l = 0, 1, 2, . . .) in the loop
momentum whereby the external momentum component k4 was kept arbitrary.

The symmetric under ξ → −ξ form factors (these are M1, . . . , M4,M
(2)
6 ,M9) go with


s
T = 
(s, t) 1

2

(
e

ik4N

qT
t + e

ik4N

qT
s
)

e
− N2B

4T 2q , (22)

5
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Table 1. The coefficients a, b, c.

n an bn cn

1 10.56832 − 0.59082 i 1.85028 + 0.08862 i 1.64935 + 0.29541 i
2 −5.79894 − 7.08982 i −4.16625 + 3.54491 i −4.63238 − 1.77245 i
3 1.04427 − 8.86227 i −4.16625 + 3.54491 i −2.84292 − 3.10179 i
4 0 0 0
5 −4.21405 − 1.77245 i −1.60873 + 0.88622 i −1.58031 + 0.44311 i
6 0 0 0
7 −1.40468 − 0.59082 i −0.10712 + 0.08862 i 0.13310 + 0.29541 i
8 1.71341 − 3.54491 i −1.90805 − 1.77245 i 0.38174 − 1.77245 i
9 0 0 0

and the antisymmetric ones (these are M5,M
(1)
6 ,M7,M8) go with


a
T = 
(s, t) 1

2

(
e

ik4N

qT
t − e

ik4N

qT
s
)

e
− N2B

4T 2q . (23)

There the function θ(s, t) is

θ(s, t) = exp
(− k

B

(
δ‖ st

s+t
+ δ⊥ ST

S+T

)
k
)

(4π)2(s + t) sinh(s + t)
, (24)

with the abbreviations S ≡ tanh s and T ≡ tanh t . In these formulae we have put the
magnetic field B = 1. It can be restored by the substitution s → Bs, t → Bt, T → T/B in
equation (21).

In the following, we focus on the spectrum at high temperature
√

B/T 	 0 in the limit of
k4 = 0, 
k → 0. For this case from the above formulae we calculated the following asymptotic
expressions for the form factors,

�(n)(k) = T√
B(4π)3/2

(
an − l2

B
bn − h2

B
cn

)
− θn. (25)

The corresponding coefficients a, b, c for each form factor are given in table 1. For the function
θn we get

θn = 10

3

1

(4π)2
ln

(
T 2

B

)
, n = 1, 2, 3; (26)

θn = 0, n �= 1, 2, 3. (27)

It is interesting that all these form factors are expressed in terms of Rieman’s Zeta-
function.

The imaginary part results from the instability of the tachyonic state. This is because the
spectrum of charged gluons in a constant magnetic field

E2
n = p2

3 + B(2n + 1), n = −1, 0, 1, . . . , (28)

contains a tachyonic mode at n = −1.p3 is momentum along the field direction B = B3 (see
for details, for instance, [4]). This state is a peculiarity of non-Abelian gauge fields.

The real part is responsible for the screening of transversal gluon fields. It is important to
note that at finite temperature the ratio of the imaginary and the real parts, ρ = |Im �|/|Re �|,
is an important parameter characterizing the stability of a state. If ρ < 1 the state is a quasi-
stable one and the state is unstable for ρ > 1. In case of small ρ the form factor does not need
to be resummed. For ρ > 1 the form factor should be resummed and the one-loop results are
not reliable.

6
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5. The spectra of gluons in the background field at high temperature

The spectrum of the gluon excitations is determined by the location of poles of the Green
function whereby one has to return from the Euclidean representation which was used for the
calculations to the Minkowskian one by means of k4 → i(ω + iε). Thereby the momentum
component k4 must be an arbitrary parameter and, if necessary, one has to make the analytic
continuation from the discrete values it has in the Matsubara approach, for details see [10]. In
our case, k4 was kept arbitrary in the whole course of calculation of the form factors which
resulted in equations (21)–(24).

Now, we derive the spectral equations. That can be done from equation (19) presenting
the location of poles of the Green function. There are three spectral equations. Two of them
are linear with respect to k2 and one is cubic in k2

k2 − h2�(2) − l2(�(3) − �(5)) + (uk)2�(8) = 0, (29)

k2 − l2�(1) − h2(�(3) + �(5)) + (uk)2�(7) = 0, (30)

ψ = 0. (31)

The next step is to substitute the form factors �(i) and determine the spectra in the chosen
one-loop approximation.

Different tensor structures contribute to different gluon polarization states. To investigate
the propagation of a state with a specified polarization one has to calculate the mean value of
the Green function in this state. As a particular case of possible modes, let us consider motion
along the magnetic field. We put h = 0 and consider the high temperature limits for the form
factors, substituted into dispersion equations (29), (30).

The results for the transverse state 〈s = 2|D(
ω, k2

3

)|s = 2〉 at the temperature T/
√

B = 20
is depicted in the plot (figure 1). Here s = 1, 2 describe the transversal polarizations of gluons
in the background field, as is described in detail in [4, 5] and ω is the frequency, k4 →
i(ω + iε).

One mode is stable. It propagates with velocities less than the speed of light. The vacuum
polarization acts as a medium for neutral gluons. The other one is tachyonic.

As concerns the modes moving in perpendicular to the field directions, the corresponding
form factors �(2) and �(3) have large imaginary parts and need a different treatment which is
not discussed here.

6. Conclusion

In SU(2) gluodynamics, we derived the tensor structure of the exact neutral gluon Green
function in an Abelian homogeneous magnetic field at finite temperature. It is presented as the
linear combination of 10 tensors T (i). It was proved that these tensors form an algebra with
respect to the operation of anticommutation, whose structure constants have been calculated.
The spectrum of gluons was obtained from the location of poles of these Green function with
the one-loop form factors inserted. The equations for the spectrum of the neutral gluons were
derived.

It was shown that for the transversal modes moving along the direction of the field the
speed of propagation is smaller than the speed of light and that there are new modes created
due to the environment. In the one-loop approximation, all the form factors contain imaginary
parts because of the well-known tachyonic instability. Our results are aimed as a step toward
a resummation of perturbation series expecting a stabilization of the spectrum.

7
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. . . . .

Figure 1. Dispersion relations for the transversal modes in case of motion along the field for h2 = 0
and T/

√
B = 20. The curves represent the dependence of the square of the gluon frequency ω2

on the square of the momentum, 
k2 = k2
3 . The dotted line is the tree level spectrum ω2 = k2

3 . The
solid line is the first solution of equation (30) and the dashed line is the second solution of this
equation.
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